
Naval Research Laboratory
Washington, DC 20375-5320

Programming
in Perl

Course Notes

Michael G. Vonk
Center for Computational Science
(202)767-3884
michael.vonk@nrl.navy.mil

Instructor:

July 31, 1998

Programming in Perl

1. Introduction..1

2. Perl Script Format and Execution ...2

3. Data Types ..3
3.1. Scalars ..3
3.2. Arrays of Scalars...4
3.3. Associative Arrays of Scalars ...5
3.4. Scalar vs. Array Context..6

4. Operators...7

5. Control Structures ...9
5.1. Conditional Statements ...9
5.2. Looping Statements ...10
5.3. Regular Expression Matching ..11

6. Input/Output ..13
6.1. Reading Input ..14
6.2. Writing Output ...14
6.3. Formatted Reports..14

7. Miscellaneous Statements ...16

8. Subroutines...17

9. Perl Availability and Installation...19

10. References ...20

11. Summary ...21

1

Programming in Perl

1. Introduction

Perl is a public domain scripting language that can be used
to automate system administration tasks, to handle Web form
results and build Web pages on the fly, and as a general purpose
tool. This class serves as an introduction to Perl and covers the
following topics:

• script format and execution
• data types
• operators
• control structures
• input and output
• subroutines

Perl is designed to perform tasks too complex for shell scripts,
but without the complications associated with languages like C.
It is available on a wide range of systems, including UNIX
workstations, Macintoshes, and PCs.

2

Programming in Perl

2. Perl Script Format and Execution

The following is the ubiquitous "hello world" program written
as a Perl script:

Example 1 Hello World

Perl scripts are executed (under UNIX) by first granting execute
access to the script file and then naming it on the command line
(assuming the current directory is set in your path variable):

% chmod u+x hello
% hello

Perl scripts are completely parsed and compiled before execu-
tion, making them fast once execution starts, and eliminating
syntax errors once execution begins.

Notes: All statements end in semicolons.

Comments begin with a pound sign and continue
until the end of the line.

#!/usr/bin/perl
#
Description: Basic perl script
#
Usage: hello

print "Hello, world...\n";

3

Programming in Perl

3. Data Types

The following types of variables are available:

• scalars
• arrays of scalars
• associative arrays of scalars

Perl’s name space is exclusive—you can use the same name for
a scalar variable, an array, an associative array, etc. without any
conflicts. Perl determines data type based on context.

3.1. Scalars

Scalar variables can be any of the following:

• integers
• floating point numbers
• strings

Perl variables do not need to be declared. Undefined numeric
variables default to zero—undefined string variables default to
the null string. Scalar variables are always referenced using the
’$’ prefix.

Numeric examples:

$a = 12;
$b = $a * 3.14159;
$c = 4.06E2; # Scientific notation
$d = 0177; # Octal—starts with ’0’
$e = 0xFF; # Hex—starts with ’0x ’

4

Programming in Perl

Strings can be delimited by quotation marks, apostrophes, or
backquotes. Depending on the delimiter used, various types of
substitutions within the string are performed:

String examples:

$class = "Programming in Perl";
$name = ‘whoami‘;
print "Hello $name, welcome to $class\n";
print ’The value of $name is not given here’;

3.2. Arrays of Scalars

Arrays are ordered lists of scalar data and are referenced using
the ’@’ prefix. Array assignment occurs as follows:

@a = (406, 714, 511);
@b = ("Hello", "world");
@c = (0..9); # list constructor
($d, $e) = (1, 2); # same as $d=1; $e=2;

Array elements are referenced by their numeric index:

$a[1] = 755;
($f, $g) = @c[5,6]; # array slice (note the ’@’)

Array indexes begin at zero by default. The base index for all
arrays can be changed by resetting the $[variable.

" string " Variable substitution and backslash escaping
’ string ’ Only \’ and \\ escapes are interpreted
‘ command‘ Command output

5

Programming in Perl

The last valid index of an array is given by $#array-name . The
size of an array is thus:

$size = $# array-name - $[+ 1;

Assigning a value beyond the end of an array extends it.

Perl has built in operators to add or remove elements on the
right side of an array (push and pop), or on the left side (shift
and unshift), and to reverse or sort arrays (reverse and
sort).

3.3. Associative Arrays of Scalars

Associative arrays are unordered lists of ’key-value’ pairs and
are referenced using the ’%’ prefix. Keys may be any scalar
value, including non-integers and negative numbers. Associa-
tive array assignment occurs as follows:

%budget = ("food", 100,
 "entertainment", 50,
 "lodging", 150);

Associative array elements are referenced by key:

$budget{"food"} = 125;

Perl has built in associative array operators to delete ’key-value’
pairs (delete), to return a list of keys or values (keys and
values), and to loop through all ’key-value’ pairs.

6

Programming in Perl

3.4. Scalar vs. Array Context

If an operator expects a scalar operand, it is said that the oper-
and is being evaluated in a scalar context. Likewise, operators
expecting array operands are said to evaluate those operands in
array context.

Sometimes this can lead to unexpected results. For example:

@a = (406, 755, 511);
$a = (406, 755, 511);

The first line creates a new array @a from a list of initial values.
The second line sets a scalar variable $a to the length of an array.

Taking advantage of array vs. scalar context, array size can be
obtained simply by using:

$size = @ array_name ;

Other operators, like the filehandle operator (discussed later),
yield different results depending on whether they are used in
scalar context (reads one line), or array context (reads all lines).

7

Programming in Perl

4. Operators

Expression Operators

String Numeric
. (concatenation) +

x (string repetition) -
*

/ (floating point)
** (exponentiation)
% (modulus, integer)

Comparison Operators

String Numeric
eq ==
ne !=
lt <
le <=
gt >
ge >=

Note: Don’t confuse string and numeric comparison
operators—they are roughly the opposite of Bourne
shell test operators.

Boolean Operators

&& (and)
|| (or)
! (not)

8

Programming in Perl

Matching Operator

$string =~ / regex / true if $string contains regex
(see examples in next section)

Binary Assignment Operator

$a op= $b; shorthand for $a = $a op $b;

Autoincrement and Autodecrement

$a++ $a--
++$a --$a

Precedence

See precedence table. Use parantheses to override.

9

Programming in Perl

5. Control Structures

Perl’s conditional and looping constructs are similar to those
in other languages. The condition tested is either true or false as
shown in the following "truth table":

true false

numeric non-zero 0
string non-empty string* empty string*
array non-empty array empty array

* A string containing a single character "0" is considered false.

5.1. Conditional Statements

Syntax for the if-then-else construct is as follows:

if (condition) {
statement-block

}
elsif (condition) {

statement-block
}
else {

statement-block
}

Another conditional construct is unless :

unless (condition) {
statement-block

}

10

Programming in Perl

5.2. Looping Statements

The while and until constructs have the following syntax:

while (condition) {
statement-block

}
until (condition) {

statement-block
}

The for and foreach statements are interchangeable. They
come in two forms:

for (initial ; condition ; increment) {
statement-block

}
foreach value (list) {

statement-block
}

Examples:

for ($i=0; $i <= 10; $i++) {
 print "$i ";
}
foreach $key (keys %array) {
 print "at $key we have $array{$key}\n";
}

Perl has two constructs for jumping out of loops:

next jump to next iteration of loop
last break out of loop

11

Programming in Perl

5.3. Regular Expression Matching

You can search for patterns within strings using the pattern
matching operator:

$string = "Perl programming";
if ($string =~ /Perl/) {
 ...
}

The following regular expressions can also be used:

. matches any character (except newline)
[abc] matches any one of the characters specified
[^abc] matches any one of the characters not specified
^ matches beginning of string
$ matches end of string

+ matches preceding pattern one or more times
? matches preceding pattern zero or one times
* matches preceding pattern zero or more times

(...) groups pattern into single element
(...| ...) matches any one of the patterns specified

Examples:

/^$/ empty string
/(Perl|CGI)/ Perl or CGI
/80[23]?86/ 8086, 80286, 80386

12

Programming in Perl

Additional regular expression characters can be used to match
non-alphanumeric entities:

\w matches any alphanumeric character (plus "_")
\W matches any non-alphanumeric character
\b matches word boundaries
\B matches non-word boundaries
\s matches whitespace
\S matches non-whitespace
\d matches numeric
\D matches non-numeric

Examples:

/^\s*$/ matches string containing only spaces, tabs, and
newline characters or an empty string

/d+/ matches a string of digits

Using parantheses for grouping, the matched substring can
accessed via variables $1 , $2 , etc.:

$string = "Perl programming";
if ($string =~ /(Perl|CGI) programming/) {
 $language = $1;
}

13

Programming in Perl

6. Input/Output

Files are read and written via filehandles. Filehandles, written
in uppercase, are opened and closed as follows:

open(FILEHANDLE," filename ");
close(FILEHANDLE);

There are three predefined filehandles—STDIN, STDOUT, and
STDERR.

The following modifiers can be used with open :

File status checking tests include:

"< filename " open filename for reading (default)
"> filename open filename for writing (if filename

exists, it is overwritten)
">> filename " open filename for appending
"| command" write output to command

" command|" read input from command

-e file or directory exists
-f entry is a plain file
-d entry is a directory
-r file or directory is readable
-w file or directory is writable
-x file or directory is executable

14

Programming in Perl

6.1. Reading Input

Lines of input are read by evaluating <FILEHANDLE>. The
following example reads an entire file, echoing each line to stan-
dard output:

open(INPUT,"input.dat");
while ($line = <INPUT>) {
 print $line;
}
close(INPUT);

In an array context, entire files can be read in at one time:

@records = <DATA>;

6.2. Writing Output

Two output commands are print and the C style printf :

print "Hello, world...\n";
printf("Sum = %d\n",$a+$b);

6.3. Formatted Reports

Format statements can be used to format output, including page
headers and footers, page length, and justification. Formats can
be placed anywhere in the program and are defined as follows:

format format-name =
template

fieldlines possibly containing
 fieldholders

valuelines
.

15

Programming in Perl

For each field line containing a fieldholder, a value line must fol-
low containing a list of scalar variables, one per fieldholder, sep-
arated by commas.

The write command outputs text to a filehandle using the cur-
rent format for the filehandle (by default, the format with the
same name):

write filehandle ;

Fieldholders

Most start with ’@’. Number of characters, including the ’@’,
determine field width.

Strings are padded with blanks or truncated as necessary.

Multiline fields use ’@*’ on line by itself. Filled fields are used
to create filled paragraphs, breaking the text into conveniently
sized lines at word boundaries, wrapping the lines as necessary.

^<<<<<<

Corresponding value for a filled field must be a scalar variable
containing text, not an expression.

@<<<<< Left justified string
@>>>>> Right justified string
@||||| Center justified string
@####.## Fixed precision numeric field

16

Programming in Perl

7. Miscellaneous Statements

Splitting Records into Individual Fields

The split command breaks out regular expression delimited
fields from an input string and places these fields into a list of
strings:

($a,$b,...,$n) = split(/ regex /,$ string);

For example:

@fields = split(/:/,$passwd_record);

Joining Fields into Records

Opposite of the split command. Used as follows:

$record = join($ delimiter ,@list);

Removing the Last Character of a String

The chop command takes a string and chops off the last charac-
ter:

chop($string);

This is particularly useful to remove the newline character from
a line of input.

while ($record = <DATA>) {
 chop($record);

process $record
}

17

Programming in Perl

8. Subroutines

Subroutines, with arguments and return values, are used to
make Perl programs more modular. Subroutines, which can be
placed anywhere in the program, are defined as follows:

sub subroutine-name {
statement-block

}

The last expression evaluated in a subroutine is by default
it’s return value. Other values (either scalars or arrays) can be
returned using an explicit return statement with a specified
value:

return value ;

By default, all variables are global to the entire program. Local
variables can be declared using the local statement:

local (variable-name);

All variables not instantiated with local are global to the entire
program.

Subroutines are invoked as follows:

&subroutine-name (argument-list);

Subroutine arguments are assigned to the ’@_’ variable which is
local to the subroutine.

18

Programming in Perl

The following example simply multiplies two numbers and
returns the result:

Example 2 Multiply Subroutine

$a = 3;
$b = 12;
$c = &mult($a,$b);
 .
 .
 .

Define multiply subroutine

sub mult {
 local($first,$second) = @_;
 local($result);

 $result = $first * $second;

 return $result;
}

19

Programming in Perl

9. Perl Availability and Installation

Perl, distributed under the GNU public license, is available via
anonymous FTP from several locations. Perl can be run on
many types of systems, including:

• UNIX
• Macintosh
• DOS
• VMS

Perl is also available on Code 5595’s Andrew File System
(AFS) server as part of the online software repository and can be
accessed from any UNIX system at the Lab. (Contact Computa-
tional Support Services at 767-3884 for more information about
AFS and installing an AFS client on your system.)

These notes were developed for Perl 4.0, patch level 36
(Perl 4.036). Perl 5.0 is also available and has many additional
features including object oriented programming. Everything
covered in these notes should also work under Perl 5.

20

Programming in Perl

10. References

Many online and hardcopy references were used in creating this
class. Among the best of these are the following:

• "Learning Perl, 2nd Edition" (aka the "Llama Book")
by Randal L. Schwartz & Tom Christiansen
O’Reilly and Associates, Inc.
ISBN: 1-56592-284-0

• "Programming Perl, 2nd Edition" (aka the "Camel Book")
by Larry Wall, Tom Christiansen & Randal L. Schwartz
O’Reilly and Associates, Inc.
ISBN: 1-56592-149-6

• "Advanced Perl Programming"
by Sriram Srinivasan
O’Reilly and Associates, Inc.
ISBN: 1-56592-220-4

• the "Perl reference materials" Web page at:
http://www.eecs.nwu.edu/perl/perl.html

• the newsgroup comp.lang.perl

21

Programming in Perl

11. Summary

Perl has become the "tool of choice" for many system
administrators and Web page designers, as it allows you
to do everything you can do using shell scripts, the sed and
awk utilities, the C programming language, and many other
commands as well.

Hopefully this class will put you well on the way to becoming
an effective Perl programmer.

